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Abstract— We propose a framework that uses temporal logic
specifications to predict and monitor the intent of a robotic
agent through passive observations of its actions over time.
Our approach uses a set of possible hypothesized intents spec-
ified as Büchi automata, obtained from translating temporal
logic formulae. Based on observing the actions of the robot,
we update the probabilities of each hypothesis using Bayes
rule. Observations of robot actions provide strong evidence
for its “immediate” short-term goals, whereas temporal logic
specifications describe behaviors over a “never-ending” infinite
time horizon. To bridge this gap, we use a two-level hierarchical
monitoring approach. At the lower level, we track the immedi-
ate short-term goals of the robot which are modeled as atomic
propositions in the temporal logic formalism. We apply our
approach to predicting intent of human workers and thus their
movements in an indoor space based on the publicly available
THÖR dataset. We show how our approach correctly labels
each agent with their appropriate intents after relatively few
observations while predicting their future actions accurately
over longer time horizons.

I. INTRODUCTION

In this paper, we present an approach that predicts and
monitors an agent’s intent in a given environment through
passive observations of their actions. It is useful for many
robotics applications. Accurate prediction of intents (goals)
leads to predictions of future actions and states of an agent.
Likewise, monitoring adherence to the stated intents allows
us to detect failures or deviations during deployment.

A large volume of work on intent monitoring focuses
on using observations of the robot’s action to predict its
“immediate” goals. Fig. 1 shows the (x, y) positions of
an agent from an actual play of the popular game Over-
cooked [1], an environment that has been used in the past
to study human-robot interaction problems [2]. The figure
also shows the stations in the kitchen p0 − p3 and an oven
p4. From each segment of the trajectory, it is possible to
predict that immediate goal is to reach a particular region
either by extrapolating its trajectory [3], or by comparing its
trajectory against the most efficient path to the region [4],
[5]. However, this single immediate goal is part of a larger
mission that will dictate the subsequent future goals. For
instance, the chef may be executing a mission that involves
repeatedly moving between the regions p1 and p4. We
therefore distinguish between the immediate or “low-level”
intent (reaching the oven) and the longer-term “higher-level”
intent (the patrolling mission).

In this work, we use temporal logic specifications for high-
level intents [6], [7]. Temporal logic has emerged as a very
powerful framework for specifying a rich set of reactive
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behaviors for robots [8]. Efficient algorithms for synthesizing
planners and low-level controllers to achieve these specifica-
tions are well-known [8], [9], [10], [11]. Temporal logics
specify behaviors over an infinite time horizon although
finite time horizon temporal logic specifications have also
been studied [12]. Infinite time horizon specifications appear
unnatural at first glance, since all our data is over a finite
time horizon. Nevertheless, temporal logic specifications
involving infinite time horizons are a convenient approach
to specifying common robot tasks [8]. The time horizons
involved in these tasks are long enough to justify idealizing
them as infinite/never-ending.

Starting from a given set of temporal logic formulas
that express the possible intent hypotheses, we use standard
approaches to translate them into Büchi automata, which
are finite state machines that accept infinite traces [13]. We
associate traces of these automata with costs that are incurred
by the robot when executing them. In turn, we use these
costs with the Boltzmann noisy rationality model of robot
actions to assume a distribution over the possible ways a
robot could satisfy each hypothesized intent [14], [15]. Our
approach then uses a Bayesian inference framework at two
levels: at the level of the robot workspace, it observes actions
of the robot to predict its immediate goal. At the level of the
hypothesized intents, our framework tracks a belief state that
consists of a probability for each hypothesized intent and
each state of the automaton corresponding to the intent. Our
approach uses Monte-Carlo simulations using samples from
the posterior belief state to infer a tree of possible future
actions beyond the immediate goals of the robot.

We evaluate our approach on a real-world human tra-
jectory dataset, THÖR [16] that tracks the positions of
nine individuals moving between six pre-defined regions in
an environment. These include individuals performing pre-
defined tasks that can be specified using temporal logic in
addition to “visitors” who may wander around the workspace
in an arbitrary manner. We use this dataset to address two
questions: (1) Can the framework reliably distinguish be-
tween the ground-truth intents for each agent against various
“confounders” represented by intents of other agents or just
“random” confounding hypotheses?; and (2) Can the frame-
work accurately predict future goals of the agent beyond
its immediate goals? The experimental results demonstrate
that our approach is effective at predicting three subsequent
goals of rational agents, even when there are confounding
hypotheses. Additionally, we note that the framework can
deduce the correct role of each person with high probability
from relatively short observation sequences.

The THÖR trajectory data is rather well-suited to evaluate
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Fig. 1: Components of our approach at a glance. Inputs: trajectory of the agent and workspace regions labeled by atomic
propositions and hypothesized intents. Outputs: Belief state and prediction tree for future behaviors.

our approach since the dataset involves participants with
specific roles, such as visitor, lab worker or utility worker.
These roles can themselves be specified as temporal logic
formulas. This is in contrast to applications involving au-
tonomous driving wherein we seek short-term (1-2 seconds)
or medium term (3-5 second) predictions for the future
positions of agents in the road. Such predictions involve addi-
tional contextual information such as pedestrian walk signals
and/or markings on the road [17]. Furthermore, predictions
of future trajectories can be achieved using machine learning
approaches that do not necessarily need to label agents with
their presumed intents [18].

II. RELATED WORK

The problem of intent inference has its origins in the
AI planning community, wherein many different approaches
to plan/intent recognition have been considered [19]. The
Bayesian approach which we adopt in this paper arises from
the work of Charniak and Goldman who use a Bayesian
network called plan recognition network [20]. Interestingly,
the need for a hierarchical approach is already evident in their
work, wherein the plan recognition network naturally places
“high level” plans at the root of the network and the lowest
level actions at the leaves which constitute the observations.
Key differences include (a) our approach focuses on intent
inference for reactive (temporal logic) specifications rather
than plans that consist of finitely-many, partial-ordered se-
quence of actions; and (b) typically plan recognition requires
us to construct detailed background theories in first-order
logic to bridge from various hypothesized high level goals
to possible sequences of actions to carry out these goals.
In our approach, such “background knowledge” is implicit
in our workspace model, and also in the Boltzmann noisy
rationality model used in this paper.

Inverse reinforcement learning (IRL) is yet another related
area that focuses on inferring an unknown reward structure
for a Markov decision process (MDP) from observations of
actions corresponding to some policy [21]. IRL has been

used to recognize agent goals by modeling the environment
and actions as MDPs and using interpreting how various
goals can be specified by different sets of rewards in this
MDP [22]. The IRL approach has been very popular with
a variety of approaches that seek to apply IRL to various
problems of inferring agent goals. Our approach proposed
here concerns reactive specifications expressed in temporal
logic that are not easy to convert into a set of rewards
associated with states/actions of an MDP [23].

Other closely related approaches infer temporal-logic or
automata-based specifications directly from observations of
a robot’s trajectory [24], [25], [26], [27]. The main differ-
ences are two-fold: (a) the approaches described above often
consider the entire trajectory or a set of trajectories whereas
our work considers a set of observations that are part of a
trajectory; (b) we adopt a Bayesian approach over a fixed-set
of hypothesis whereas the works cited above often consider
a large (even potentially infinite) set of possible formulas but
infer a best explanation that explains the observed traces.

Whereas we focus on a hierarchical approach, there are
numerous works that rely on predicting lower-level (imme-
diate) goals [4], [5], [14]. Best et al. propose a Bayesian
inference approach that focuses on recognizing an unknown
goal of the robot [4]. A similar approach is taken in our
previous work for a slightly more general class of “reach-
while-avoid” formulas in temporal logic that represent a
subset of possible temporal logic specifications well suited
for expressing such “low-level” intents [5]. In this work,
we generalize this class of temporal logics considerably but
require a new hierarchical approach. Fisac et al. present an
interesting combination of intent inference for a human agent
inside a shared environment where the intent of the human is
used to forecast their immediate future trajectories and guide
the robot’s planning to avoid the human [14].

III. PRELIMINARIES

In this section, we briefly present models of the workspace,
and Büchi automata for representing omega-regular lan-



guages that describe the goals of the agent.

A. Workspace

We will assume that the robotic agents operate in a
workspace which is modeled by a workspace graph.

Definition 3.1 (Workspace Graph): A workspace graph
M is a tuple : ⟨C,E,A, ℓ⟩ consisting of

1) A set of cells C, wherein each cell ci ∈ C represents a
set of possible robot states (e.g., position inside a region
and velocity within some bounds).

2) A weighted edge relation E, wherein each edge is of the
form (c1, w, c2) with c1, c2 ∈ C representing the source
and target cells, and w ∈ R≥0 representing the non-
negative edge cost. The edge represents a state transition
from cell c1 to neighboring cell c2 with w representing
a cost associated with the move.

3) A set of atomic proposition labels A : {p1, . . . , pk}
representing special “designations” attached to cells
such as work stations, ovens, stoves and so on. We
assume that each cell can receive at most one such label.

4) ℓ : C 7→ A ∪ {ϵ} a map from each cell to an atomic
proposition label, or a special symbol ϵ denoting that
the cell is not labeled by any atomic proposition.

Example 1: Consider the Overcooked game-style environ-
ment, which is used to study human-AI coordination [28],
as illustrated in Fig. 1. It consists of a set of cells along
a grid. There are five designated cells labeled by atomic
propositions p0 − p4 corresponding to work stations and an
oven. Each cell is connected to at most eight neighboring
cells with associated edge cost.

Given a workspace graph M , a robot’s trajectory
can be described as a finite/infinite sequence of cells
T : c(0), c(1), c(2), . . ., wherein each c(i) ∈ C and
(c(i), w(i), c(i + 1)) ∈ E for each i ≥ 0 for some
cost w(i) ≥ 0. Furthermore, with each trajectory T ,
we associate a sequence of atomic proposition labels
ℓ(c(0)), ℓ(c(1)), ℓ(c(2)), . . .. The symbol ϵ stands for the
empty string in the sequence, and is elided. Also, for
convenience we will denote the atomic proposition sequence
given by a trajectory T as ℓ(T ).

Example 2: When the chef agent is moving from the
station p1 to p2, one of possible trajectories is a sequence
of 4 cells connecting p1 and p2 with a running cost of 4.8,
and corresponding labels are p1, ϵ, . . . , ϵ, p2 or simply p1, p2
after removing the ϵ symbols.

Our framework relies on two important shortest path
notions defined below.

Definition 3.2 (Shortest Paths): Given a cell c and atomic
proposition p, we define the shortest path cost sp(c, p) to be
the cost of the shortest path starting from cell c with ℓ(c) = ϵ
to any cell labeled p while ensuring that any intermediate cell
in the path is not labeled by an atomic proposition.

Likewise, we define sp(p, q) for two atomic propositions
p, q to be the shortest path starting from any cell c labeled
with atomic proposition p to any cell labeled with atomic
proposition q such that no intermediate cell in the path visits
a node labeled with an atomic proposition other than p, q.

q1start q2 q3

p1 p2 p1

Fig. 2: Büchi automaton for the property that after staying
in region p1 for some finite initial time, the robot repeatedly
cycles between p1 and p2.

B. Goal Specifications: Büchi Automata

We will now recall the use of ω-regular languages to model
the temporal goals of a robotic agent.

Definition 3.3 (Büchi Automaton): A Büchi automaton is
a finite state machine ⟨Q,A, δ, label, Q0, F ⟩ wherein, (i) Q :
{q1, . . . , qm} is a finite set of states, (ii) A : {p1, . . . , pk}
is a finite set of atomic proposition labels, (iii) δ is an
edge relation δ ⊆ Q × Q wherein (qi, qj) ∈ δ signifies an
edge from qi to qj , (iv) label : Q → A is a labelling map
associating each state with an atomic proposition, (v) Q0 ⊆
Q is the set of initial states, and (vi) F ⊆ Q is a set of
accepting states.

Given an infinite sequence of atomic proposition labels,
σ : p1, p2, p3, . . ., wherein pj ∈ A, a run corresponding to
such a sequence (if one exists) is an infinite sequence of
states q0, q1, q2, · · · such that (a) q0 ∈ Q0 is an initial state,
(b) (qi−1, qi) ∈ δ for all i ≥ 1, and (c) label(qi) = pi. Due
to the non-deterministic nature of the Büchi automaton, it
is possible that for a given sequence of atomic proposition
labels, we may have no runs, a single run or multiple runs.

A sequence of atomic propositions σ is accepted by a
Büchi automaton iff there exists a corresponding run which
visits some accepting states in the set F infinitely often. The
language L(A) for automaton A is the set of all sequences
of atomic propositions that are accepted by it.

An example of a Büchi automaton corresponding to a
mission specification is given in Fig. 2. Büchi automata are a
widely used approach to specifying a rich set of robotic agent
behaviors [8], [9], [10], [11]. It is well known that temporal
logic specifications can be translated into non-deterministic
Büchi automata. In this paper, we will use Büchi automata
to specify behaviors of robotic agents.

Given a trajectory T : c(0), c(1), . . . , c(t), . . . , and a
Büchi automaton specification A, we say that T satisfies
A, denoted T |= A iff the corresponding labeling ℓ(T ) is
accepted by the automaton A.

IV. HIERARCHICAL INTENT MONITORING FRAMEWORK

In this section, we will describe our monitoring framework
in multiple steps: (a) A cost model that describes the notion
of cost associated with satisfying a Büchi automaton (ω-
regular) specification; (b) Translating from costs over runs of
the Büchi automata to a probability distribution over them;
(c) The “belief state” maintained by the monitor and how this
is updated upon various robot moves. By integrating these



steps, we will describe our overall monitor implementation
that predicts the robot behavior further out into the future.

A. Cost Models and Probabilities over Paths

Now, we consider a question that is fundamental to our
approach: Given a specification for a goal, how would
the robot go about satisfying such a goal? A perfectly
efficient robot seeking to optimize costs would seek to
achieve its goals using the least possible trajectory cost.
However, perfect efficiency relies on having an accurate
model of the operating environment including costs and
sufficient computational resources. Instead, we will use a
convenient assumption of Boltzmann noisy rationality [15],
[29]. Consider a goal specification such as reaching a given
target region in the map that can be achieved by a finite
length trajectory. Let T be such a trajectory achieving this
goal. The probability that the agent would choose T is given
by P(T ) ∝ exp(−β cost(T )), wherein cost(T ) is the
overall cost of the trajectory and β ≥ 0 is a rationality
factor. As β → 0, all trajectories that achieve a given goal
become equi-probable, whereas as β → ∞, the least cost
path becomes much more probable than sub-optimal paths.

Next, we define costs over the infinite runs in a Büchi
automaton A. These costs will inform the probabilities over
these runs through the “rationality” assumption. Recall that
the states of a Büchi automaton are labeled with atomic
propositions, and these atomic propositions refer to desig-
nated cells in the workspace of the robot.

Definition 4.1 (Single-Step Cost): Let qi, qj be two states
in the automaton connected by an edge, such that pi :
label(qi) and pj : label(qj). We define a “single-step cost”
cost(qi, qj) as equal to sp(pi, pj) (see Def.3.2). If there is
no edge from qi to qj , we define cost(qi, qj) = ∞.

The next component of the cost model concerns the “cost-
to-satisfy” starting from a given state of the automaton. Sup-
pose the robot has just visited region pj and this corresponds
to a state qj in the automaton A, such that label(qj) = pj .
We would like to associate a cost with an infinite accepting
run for the Büchi automaton starting from qj (recall that such
a run must visit some accepting state infinitely often). There
is no single unique way to define such a cost. For instance,
taking an infinite sum of all individual costs will lead to a
divergent summation. Therefore, we have to “weight down”
or discount future costs in some manner.

a) Costs for Accepting Runs: First, let σ : qk →
qk+1 → qk+2 → · · · represent some infinite accepting run
of the Büchi automaton starting from the state qk. There are
many options for how to associate a cost with such a run.
We discuss a few such options below:
Discounted Cost: For discount factor 0 < λ < 1, we define

cost(σ) :
∞∑
j=1

λjcost(qk+j−1, qk+j) .

Cost-to-Epoch: Let epoch(σ) represent the index j + k of
the first state in the run that is accepting:

epoch(σ) =
∞
min
j=0

{j| qj+k is accepting} .

We define cost(σ) =
∑epoch(σ)

j=1 cost(qk+j−1, qk+j),
as simply the cost to the first accepting state.

Blended Cost: We combine these cost metrics by adding the
cost to epoch until the first accepting state with a dis-
counted cost moving forward from that state onwards.

cost(σ) :

{ ∑epoch(σ)
j=1 cost(qk+j−1, qk+j) +∑∞
j=1+epoch(σ) λ

jcost(qk+j−1, qk+j)
.

b) Cost-to-Satisfy: We will now define the overall cost-
to-satisfy starting from an state qk costToSat(qk) as

inf {cost(σ) | σ : qk → qk+1 → qk+2 → · · · is accepting.} .

We will assume that the costToSat(q) for each state has
the property that costToSat(q) < ∞ if and only if there are
accepting runs starting from the state q. Specifically, if a state
q cannot lead to any accepting runs, then costToSat(q) = ∞.
Likewise, for states q with at least one accepting run starting
from them, costToSat(q) < ∞.

Example 3: Consider the Büchi automaton from Figure 2
with 3 states and 2 atomic propositions {p1, p2} with
label(q1) = label(q3) = p1 and label(q2) = p2. Furthermore,
assume sp(p1, p2) = sp(p2, p1) = 10.

Suppose we use a discounted cost model with discount
factor λ = 0.5, the cost from state q1, costToSat(q1) = 0
since we note that by staying in q1 for a long enough initial
prefix, the expensive moves from p1 to p2 and back can be
pushed arbitrarily far into the future.

The epoch cost measures the shortest path to the final state
without discounting. Under this model costToSat(q1) = 20
since the shortest path requires us to go from p1 to p2 and
back to reach the accepting state q3. ■

Computing the costToSat for each state, given an automa-
ton can be performed quite efficiently, depending on the kind
of cost-metric chosen. The discounted cost can be computed
as the solution to a linear programming problem by treating
the automaton as a Markov-Decision Process (MDP). Non-
accepting runs can be excluded simply by removing any
state which does not reach a strongly connected component
involving the accepting states of the automaton. The cost-
to-epoch can be computed using a simple shortest path
algorithm that treats accepting states as destination. By
computing both costs, we can also compute the blended cost.

c) From Costs to Probabilities: We can now use the
Boltzmann rationality model to designate probabilities asso-
ciated with state transitions. Let us consider adjacent states
qi, qj . We define P(qj |qi), the probability of visiting state qj
next having just visited qi as in (1) below. The expression

P(qj |qi) ∝ exp {−β (cost(qi, qj) + costToSat(qj))} =
exp (−β (cost(qi, qj) + costToSat(qj)))∑

qk∈adj(qi)
exp {−β (cost(qi, qk) + costToSat(qk))}

(1)



on the denominator normalizes the probability over all states
qk adjacent to qi (denoted qk ∈ adj(qi)).

The probability of a finite path q1 → · · · → qn is given
by the product P(q2|q1)× · · · ×P(qn|qn−1). In other words,
the choice of subsequent state is considered independent of
the actual path taken to reach the previous state.

Example 4: Continuing with the automaton in Ex. 3,
let us assume the cost-to-epoch model. Therefore,
costToSat(q1) = 20, costToSat(q2) = 10 and
costToSat(q3) = 0. Thus, using Eq. (1), we obtain
P(q1|q1) = exp(−β(0+20))

exp(−β(0+20)+exp(−β(10+10)) = 0.5 for all
values of β. Similarly, we can verify that P(q2|q1) = 0.5
and P(q3|q2) = P(q2|q3) = 1. ■

B. “High-Level” Intent Monitor

Now we will discuss the overall monitoring algorithm. We
input automata A1, . . . ,An. Let each Ai be denoted by the
set of states Qi, edges δi and initial states Qi,0. A1, . . . ,An

share the same set of atomic proposition labels.
Assumption: We will assume that the given hypotheses
A1, . . . ,An are exhaustive. I.e., the union of the languages:
L(A1)∪ · · · ∪L(An) = Aω covers all possible sequences of
atomic propositions. To ensure this, we let An be a “default”
automaton that permits all possible behaviors, in order to
represent the fact that we are unable to explain the robot’s
behavior using the remaining hypotheses.

The key task of the monitor is to (a) maintain a belief state
and (b) update belief state whenever a workspace “event”
occurs: i.e., a robot reaches a region labeled by an atomic
proposition. We will first describe the belief state of the
robot, followed by how it is updated.

a) Belief State: The overall belief state is a vector of
probabilities: for each automaton Ai and each state qk ∈ Qi

of Ai, we maintain pr(qk), the probability that we associate
with Ai being the intent and being in the state qk of Ai.

The initial belief state is defined as pr(qj) = 1
nKi

, for
qj ∈ Qi,0, an initial state of automaton Ai, and n being
the number of automata. Otherwise, pr(qj) = 0 for non-
initial states. Here Ki = |Qi,0|. We will ensure the following
normalization property of our monitor’s belief state at all
times:

∑n
Ai,i=1

∑
qk∈Qi

pr(qk) = 1.
For each automaton Ai, we calculate the overall prob-

ability that Ai specifies the robot’s intent as: pr(Ai) =∑
qk∈Qi

pr(qk). An intent is said to be ruled out if pr(Ai) =
0: which would indicate that prior actions of the robot have
directly violated the specification. Our approach can be easily
extended to handle the possibility that the robot may change
its intent dynamically by allowing an ”implicit” transition
from every state to the starting states of every automaton
with a low probability that represents the probability of an
intent change at each step.

b) Belief State Update: We describe the belief state
update for the robot when the robot visits one of the cells
designated by the atomic proposition p. The idea is that we
will consider the next states for each automaton Ai.

Consider a state qj belonging to automaton Ai. Suppose
an atomic proposition p is encountered, let us consider the

states q′1, . . . , q
′
l that are adjacent to qj , and labeled with

atomic proposition p:

qj

q′1

...

q′l

label(q′k) = p, k = 1, . . . , l

µ(qj
p−→ q′k) = pr(qj)× P(q′k|qj)∑l

m=1 P(q′m|qj)

We define the “contribution” to next state q′k from current
state qj upon obtaining the atomic proposition p to be:
µ(qj

p−→ q′k). If label(q′k) is the atomic proposition p, the
contribution is as defined above. Otherwise, it is defined to
be 0. Note that µ(qj

p−→ q′k) distributes the current belief
pr(qj) in a manner proportional to the probability P(q′k|qj)
defined in Eq. (1). We define the normalizing factor N as
the sum of all contributions

∑
(q,q′)∈δj

µ(q
p−→ q′) over the

edges (q, q′) of all the automata Aj for j = 1, . . . , n.
The next belief state probability for a state q in automaton

Ai is given by pr′(q) : 1
N

∑
(q̂,q)∈δi

µ(q̂
p−→ q). The division

by the normalizing factor ensures that the resulting belief
state is normalized as well.

Thus, we transition from the current belief states pr(qj)
for each state qj in each automaton, to the next belief state
given by pr′(qj) for each state qj . Let A1, . . . ,An be a given
set of hypotheses and σN : p0, . . . , pN be the set of atomic
propositions encountered thus far. Our monitoring approach
guarantees the following key properties:

Theorem 4.1: The following are true of the belief state of
the monitor after encountering σN :

1) The belief state is normalized;
2) For each automaton Ai, if there exists a prefix of an

accepting run q0 → · · · → qN such that label(qi) = pi,
then pr(qN ) > 0. I.e., the belief state represents all
possible automaton states reached by the finite prefix
encountered thus far.

3) pr(Ai) > 0 iff there exists some infinite suffix σw such
that σN ◦ σw is accepted by Ai.

Proofs are provided in the extended version.
Note that our approach treats non-deterministic transitions

of the Büchi automaton as probabilistic choices made by
the agent using our cost-based model described above. We
justify this by noting that various non-deterministic paths
in a Büchi automaton represent different “options” available
to the robot to satisfy the property represented by the
automaton. Therefore, our assumption here states that the
choice is made by the robot by taking the costs of these
options into account.

V. HIERARCHICAL PREDICTOR

We will describe a hierarchical predictor that constructs
a tree of possible future goals of the robot with associated
probabilities starting with the next goal. We will first consider
an “immediate-goal” monitor that predicts the probability
that the next atomic proposition will be pj , given the history
of cells visited by the robot. Using this information, and
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Fig. 3: Results on the overcooked data. (Left) Specification of hypotheses; (Middle) Probabilities of two subsequent goals;
and (Right) (part of) prediction tree obtained with probability along each branch shown.

the current belief state, we will construct a prediction tree
up to some given depth D, wherein each branch provides
the probability that the next D > 0 atomic propositions
are represented by p(1) · · · p(D). The prediction tree will
integrate information from the hypothesized intents and the
immediate-goal predictor.

A. Immediate Goal Predictor

The immediate goal predictor uses an approach described
in our previous work [5], which was in-turn inspired by that
of Best et al [4]. We will elide the details of this approach
and describe it at a high level. Given the current cell c(t)
visited by the robot in its workspace, our approach updates a
probability distribution P(p1|t), . . . ,P(pm|t) for the atomic
proposition corresponding to the region that will be visited
next by the robot. If c(t) is already designated by the atomic
proposition pj then we set its probability to 1 and the
probability of all other atomic propositions to 0. Otherwise,
we use the same Boltzmann rationality assumptions as the
high level monitor. Recall the definition of sp(c(t), pj) (see
Def. 3.2). Let P(pj |t), for pj ∈ A be the current next-
goal probabilities associated with the atomic proposition p
at time t. Suppose the robot moves from the cell c(t) to a
neighboring cell c(t + 1), we update the new probabilities
using Bayes’ rule :

P(p|t+1) ∝ P(p|t)×exp

{
−β

(
cost(c(t), c(t+ 1))+

sp(c(t+ 1), p)

)}
.

We use a recursive formulation wherein we assume P(p|t) is
a prior, and compute P(c(t + 1)|c(t), p) using the equation
above. The equation above omits the normalization factor,
which can be easily computed.

B. Prediction Tree

We will briefly describe our approach to building a pre-
diction tree of depth up to D where we assume D ≥ 2 by
integrating information from two sources (a) the next goal
probabilities P(p|t) of encountering atomic proposition p,
given the history up to time t; (b) the belief state of the
high level monitor. Each branch of the prediction tree is a
sequence of D atomic propositions p(1) . . . p(D). We wish to
associate a probability for each branch of the tree starting
from the current history. We will describe an approach to
sampling branches of the prediction tree:

1) Sample p(1) the first atomic proposition according to
the next-goal probabilities: p(1) ∼ P(p|t).

2) Compute the belief state of the high level monitor as if
the atomic proposition p(1) were encountered.

3) Sample a state qj ∈ Qi from automaton Ai according
to the belief-state probability distribution pr(qj).

4) Simulate D−1 steps in the automaton Ai starting from
qj wherein next q′ is obtained from a previous state q
according to probability P(q′|q) (see Eq. (1)).

5) Record the sequence of D−1 atomic proposition labels:
p(2), . . . , p(D) corresponding to the states encountered
in the previous step.

The sampling process described above can be repeated a
sufficient number of times to provide unbiased estimates for
the probabilities of various branches in the prediction tree.
The other branches are assigned 0 (or negligible ) probability.
Alternatively, we can perform an exhaustive exploration
through all possible next goal atomic propositions and all
possible sequences of length D − 1 starting from each
automata state with non-zero probability. This can be used
to construct the exact probabilities although the resulting
complexity will be exponential in D.

C. Running Example

Figure 3 shows our approach on the running example. Our
implementation supports easy specification of patterns using
linear temporal logic formulas as well as the specification
patterns formulated by Menghi et al [8]. In addition to these
hypotheses, our approach inputs the trajectory data and the
workspace description in order to output the prediction tree
as well as the probabilities of the subsequent goals.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed framework using
an indoor human trajectory data set, THÖR, which contains
over 600 human trajectories. The data was collected in
a room of 8.4 × 18.8 m and provides (x, y) position of
participants. We discretized the room and all trajectory data
into a workspace with 100×50 cells. The workspace contains
six designated regions, and we labeled them with atomic
proposition labels p0, p1, . . . , p5. Nine participants repeat-
edly patrol those regions according to pre-defined roles:
visitors, laboratory worker, and utility worker. Six of the nine
participants are visitors, who keep strolling between regions
designated p0, p1, p2, and p3, in an unspecified order. Two
participants designated as workers patrol assigned regions;
the laboratory worker patrols p0, p2, and p4, following the
specific order, and the utility worker patrols p1 and p4, in



(a) One incorrect intent (b) Three ground-truth intents (c) (b) + three random intents (d) (b) + ten random intents

Fig. 4: Prediction accuracy for identifying the role of an observed trajectory with a given ground-truth role. The y-axis
measures how often the most likely intent coincides with the ground-truth for that role. We report this for varying number
of additional confounding hypotheses.

(a) One incorrect intent (b) Three ground-truth intents (c) (b) + three random intents (d) (b) + ten random intents

Fig. 5: Performance of the prediction tree forecasting three next target regions of a robot. The x-axis represents predictions
for the immediate goal, and the two subsequent goals labeled 1, 2, and 3 respectively. The y-axis represents the fraction of
time the most likely prediction coincided with the actual ground-truth.

an unspecified order. Every participant avoids regions that
are not part of their targets. We generated temporal logic
specifications for each of the three roles, which are labeled
as “ground-truths” for these roles.

We evaluate our framework with four test cases distin-
guished by the type and number of hypothesized intents.
(a) A single hypothesis that does not correctly describe any
role; (b) Three of the ground-truth intents for the visitor, lab
worker, and utility worker; (c) Three randomly generated
“confounding” intents in addition to the three ground-truth
intents; (d) Ten randomly generated “confounding” intents
in addition to the three ground-truth intents. The randomly
generated “confounding” intents follow the same overall
pattern as the ground-truth intent: i.e., involving patrolling
some regions while avoiding others. However, the regions
to patrol and avoid are chosen randomly. Thus, there may
be some overlap between the confounding intents and the
actual ground-truths. In all cases, we add a “default” intent
represented by a Büchi automaton accepting all possible
sequences.

Code for the experiment and data can be found in https:
//github.com/cuplv/HIMO_intent/. The details of
hypothesized intents used for each test case are available as
part of the repository above.
Identifying Correct Intent: Fig. 4 illustrates our frame-
work’s performance in recognizing the correct intent while
rejecting other intents. When an incorrect intent is provided,
the framework infers that the given intent is unable to

explain the observed trajectory. As a result, the default
intent receives a high probability, as shown in Fig. 4a. In
contrast, the framework effectively detects the real intent
of each participant when the ground-truth is a part of the
hypothesized intents. We note that the performance degrades
as we add more confounding intents, as expected. However,
the ground-truth intents are still the most probable among all
hypothesized intents in all cases. The probability assigned to
the ground-truth for visitor is markedly lower than the other
two roles, because visitor trajectories are quite sub-optimal
in terms of cost when compared to the two worker roles.

Goal Prediction: Fig. 5 shows the prediction accuracy in
forecasting three subsequent goals for the robot. We consider
a prediction attempt a “success” when the most probable
atomic proposition predicted by the framework matches the
actual ground-truth. As illustrated in Fig. 5a, accurate pre-
diction is impossible over random hypotheses. However, the
immediate goal prediction is unaffected. Fig. 5b-5d illustrates
that the framework is capable of predicting long-term goals
with high probability for laboratory and utility workers. Since
their tasks consist of patrolling specific regions in a fixed
order, the framework can predict future goals unless they
change their intents during the missions. On the contrary, the
prediction accuracy for visitors is lower than that of others
due to their sub-optimal behaviors, as noted.

All computations were performed on a MacBook Pro with
2.6 GHz Intel Core i7 and 16GB RAM. The computation
time for monitoring, including generating a prediction tree,

https://github.com/cuplv/HIMO_intent/
https://github.com/cuplv/HIMO_intent/


took less than one second, on average.

VII. CONCLUSION

Thus, we have proposed a logic-based hierarchical intent
monitoring framework for mobile robots that predicts both
high-level and low-level intents. Future work will consider
extensions to more interesting scenarios combining robot
actions with changes in the environment. We are also investi-
gating extensions to cases where the robot is non-holonomic
and in the presence of constraints on its motions.
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